Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Brook Trout (Salvelinus fontinalis) populations have experienced marked declines throughout their native range and are presently threatened due to isolation in small habitat fragments, land use changes, and climate change. The existence of numerous, spatially distinct populations poses substantial challenges for monitoring population status (e.g., abundance, recruitment, or occupancy). Genetic monitoring with estimates of effective number of breeders (Nb) provides a potentially powerful metric to complement existing population monitoring, assessment, and prioritization. We estimatedNbfor 71 Brook Trout habitat units in mid‐Atlantic region of the United States and obtained a meanNbof 73.2 (range 6.90–493). Our modeling approach tested whetherNbestimates were sensitive to differences in habitat size, presence of non‐native salmonids, base flow index, temperature, acidic precipitation, and indices of anthropogenic disturbance. We found significant support for three of our hypotheses including the positive influences of available habitat and base flow index and negative effect of temperature. Our results are consistent with presently observed and predicted future impacts of climate change on populations of this cold‐water fish. Importantly, these findings support the use ofNbin population assessments as an index of relative population status.more » « less
-
The stabilization of the threshold switching characteristics of memristive NbOx is examined as a function of sample growth and device characteristics. Sub-stoichiometric Nb2O5 was deposited via magnetron sputtering and patterned in nanoscale (50×50–170×170nm2) W/Ir/NbOx/TiN devices and microscale (2×2–15×15μm2) crossbar Au/Ru/NbOx/Pt devices. Annealing the nanoscale devices at 700 °C removed the need for electroforming the devices. The smallest nanoscale devices showed a large asymmetry in the IV curves for positive and negative bias that switched to symmetric behavior for the larger and microscale devices. Electroforming the microscale crossbar devices created conducting NbO2 filaments with symmetric IV curves whose behavior did not change as the device area increased. The smallest devices showed the largest threshold voltages and most stable threshold switching. As the nanoscale device area increased, the resistance of the devices scaled with the area as R∝A−1, indicating a crystallized bulk NbO2 device. When the nanoscale device size was comparable to the size of the filaments, the annealed nanoscale devices showed similar electrical responses as the electroformed microscale crossbar devices, indicating filament-like behavior in even annealed devices without electroforming. Finally, the addition of up to 1.8% Ti dopant into the films did not improve or stabilize the threshold switching in the microscale crossbar devices.more » « less
-
Abstract The increasing availability and complexity of next-generation sequencing (NGS) data sets make ongoing training an essential component of conservation and population genetics research. A workshop entitled “ConGen 2018” was recently held to train researchers in conceptual and practical aspects of NGS data production and analysis for conservation and ecological applications. Sixteen instructors provided helpful lectures, discussions, and hands-on exercises regarding how to plan, produce, and analyze data for many important research questions. Lecture topics ranged from understanding probabilistic (e.g., Bayesian) genotype calling to the detection of local adaptation signatures from genomic, transcriptomic, and epigenomic data. We report on progress in addressing central questions of conservation genomics, advances in NGS data analysis, the potential for genomic tools to assess adaptive capacity, and strategies for training the next generation of conservation genomicists.more » « less
An official website of the United States government
